Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yang Qu, ${ }^{\text {a,b }}$ Zhao-Di Liu, ${ }^{\text {a,b }}$
Hai-Liang Zhu ${ }^{\text {a }}$ and Min-Yu Tan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.037$
$w R$ factor $=0.093$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Bis(isothiocyanato- κN)tetrapyridinecadmium(II)

In the title complex, $\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$, the $\mathrm{Cd}^{\mathrm{II}}$ atom lies on a center of inversion. It is coordinated by four N atoms from four pyridines and two N atoms from two isothiocyanate ions and has a slightly distorted octahedral geometry.

Comment

Coordination complex synthesis as an important design element for generating new materials has been providing substances with unusual structural characteristics as well as extraordinary physical properties (Eddaoudi et al., 2002).

(I)

We report here the structure of a new cadmium complex, (I), where the $\mathrm{Cd}^{\mathrm{II}}$ atom lies on an inversion center and is hexacoordinated by the two N atoms of isothiocyanate ions and four pyridine N atoms, as shown in Fig. 1. The coordination environment of the $\mathrm{Cd}^{\mathrm{II}}$ atom adopts a distorted octahedral geometry in which two N atoms of isothiocyanate ions occupy apical sites, in trans positions. The axial $\mathrm{Cd}-\mathrm{N}$ bond distance of 2.374 (3) \AA is slightly shorter than the average $\mathrm{Cd}-\mathrm{N}$ bond of 2.392 (3) \AA in the equatorial plane. The Cd$\mathrm{N}(\mathrm{NCS})$ bond distance of 2.328 (3) \AA is a little longer than the mean value of 2.283 (2) \AA found by Moon \& Lee (2000) in a similar complex. The average value for the $\mathrm{Cd}-\mathrm{N}$ (pyridine) bond distance, 2.383 (2) \AA, is longer than the average value reported for seven- and eight-coordinate cadmium complexes (Odoko et al., 2002). The cis angles around the $\mathrm{Cd}^{\mathrm{II}}$ atom deviate slightly from the ideal angle of 90° [87.57 (9)$\left.92.43(9)^{\circ}\right]$; thus, the $\mathrm{Cd}^{\mathrm{II}}$ coordination center has slightly distorted octahedral geometry.

Experimental

All reagents and solvents were used as obtained without further purification. To 30 ml of aqueous ethanol (1:1 v / v) were added $\mathrm{CdCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~g}, 2 \mathrm{mmol}), \mathrm{KSCN}(0.39 \mathrm{~g}, 4 \mathrm{mmol})$ and pyridine ($2.0 \mathrm{ml}, 20 \mathrm{mmol}$). The mixture was stirred for ca 30 min , whereupon a clear solution was obtained. After allowing the resulting solution to stand in air for one month, large yellow single crystals formed. They

Received 14 June 2004
Accepted 21 June 2004 Online 26 June 2004
were isolated, washed with aqueous alcohol solution twice and dried in a vacuum desiccator using CaCl_{2} (yield 48%). Elemental analysis found: C 48.36, H 3.6, N 15.03, Cd 20.74\%; calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{CdN}_{6} \mathrm{~S}_{2}$: C 48.49, H 3.70, N 15.42, Cd 20.63\%.

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
$M_{r}=544.96$
Monoclinic, $C 2 / c$
$a=12.580$ (3) А
$b=13.247$ (3) \AA
$c=15.216$ (3) \AA
$\beta=107.48(3)^{\circ}$
$V=2418.6(9) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.626, T_{\text {max }}=0.926$
6707 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.093$
$S=1.01$
2576 reflections
142 parameters
H -atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.497 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2576 \\
& \quad \text { reflections } \\
& \theta=2.5-24.4^{\circ} \\
& \mu=1.10 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Platee, colorless } \\
& 0.42 \times 0.26 \times 0.07 \mathrm{~mm} \\
& \\
& 2576 \text { independent reflections } \\
& 2337 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.017 \\
& \theta_{\max }=27.0^{\circ} \\
& h=-14 \rightarrow 16 \\
& k=-15 \rightarrow 16 \\
& l=-19 \rightarrow 18
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0442 P)^{2}\right. \\
& \quad+4.4917 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

H atoms were placed in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent C atom).

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004 kj 300 zd and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

References

Eddaoudi, M., Kim. J., Rosi, N., Vodak, D., Wachter, J. \& Yaghi, O. M. (2002). Science, 295, 469-471.
Moon, H. S., Kim, C. H. \& Lee, S. G. (2000). Acta Cryst. C56, 425-426.
Odoko, M., Kusano, A. \& Okabe, N. (2002). Acta Cryst. E58, m25-m27.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Figure 1

The structure of the title compound, (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry code: $(A) \frac{1}{2}-x, \frac{1}{2}-y,-z$.

The crystal packing of (I), viewed along the b axis.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

